Autograph 7 # 定積分

オートグラフを立ち上げて「上級」を選択します。

└┘_{新しい} 3D グラフページ を押します。

🎫 ホワイトボードが選択されているのを確認します。

🔰 グラフの背景をお好みで選んでください。

キーを右側表示にする。

y=x²+2 を入力します。 ^{7世になど出版} 7 × ^{7世にないです} ^{7世にないです} ^{7世には、} ^{7世には、} ⁷世に、 ⁸世に、 ⁷世に、 ⁷世に、 ⁸世に、 ⁷世に、 ⁸世に、 ⁸世に、 ⁹世に、 ⁹

ヘルプ

定数を編集 スタートアップオプション 描画オプション

キャンセル

OK

□二次元の方程式として にチェックを入れます。

🛸 x-y-z 方向ボタンの右側の小さな矢印をクリックして、x-y 方向を選択します。

🎽 軸の設定 ボタンを押します。

範囲を、下記のように入力します。

x:最小	0	最大	4	数值	1	ピップス	0.2
y:最小	-12	最大	1 2	数値	2	ピップス	1
z :最小	-12	最大	1 2	数値	2	ピップス	1

🧲 もう一度、軸の設定 ボタンを押します。

オプションを選び、□常に外側 にチェックを入れます。

それでは、この曲線と x 軸および 2 直線 x = 1, x = 3 に囲まれた図形の面積を出してみましょう。 S= $\int_1^3 x^2 + 2dx$

😡 選択モード を選んで、赤い曲線をクリックします。選択すると赤がグレーに変更されます。

²²座標を入力 ボタンを押して、x:1 を入れて OK を押します。

● もう一度、座標を入力 ボタンを押して、x:3を入れて OK を押します。
グラフの何もないところで、一度左クリックします。曲線が赤色に戻ります。
二つの点をそれぞれ左クリックします。選択されると、灰色の四角が大きくなります。
右クリックすると、メニューが開きますので、面積を計算 を選択します。
○シンプソンの公式 を選択します。分割:5。OK ボタンを押します。

このような画面になりましたでしょうか。

結果ボックスを閉じてください。 つぎに体積を求めてみましょう。

≤ 低速プロット ボタンを押します

・ 曲線の下のピンクの範囲をクリックします。選択するとグレーに変更されます。 右クリックすると、メニューが開きますので、体積を計算を選択します。

トラッグ ツールを選び、動かしてみましょう。

元に戻したい時は、

、 x-y-z 方向ボタンの右側の小さな矢印をクリックして、x-y 方向を選択します。

- Ctrl ボタンで 拡大縮小

+ Shift ボタンで グラフの位置を変更できます。